Program Listing for File matrix.hpp

Return to documentation for file (cif++/matrix.hpp)

/*-
 * SPDX-License-Identifier: BSD-2-Clause
 *
 * Copyright (c) 2023 NKI/AVL, Netherlands Cancer Institute
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#pragma once

#include <array>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <ostream>
#include <tuple>
#include <type_traits>
#include <vector>

namespace cif
{
// --------------------------------------------------------------------
// We're using expression templates here

template <typename M>
class matrix_expression
{
  public:
    constexpr size_t dim_m() const { return static_cast<const M &>(*this).dim_m(); }
    constexpr size_t dim_n() const { return static_cast<const M &>(*this).dim_n(); }

    constexpr bool empty() const { return dim_m() == 0 or dim_n() == 0; }

    constexpr auto &operator()(size_t i, size_t j)
    {
        return static_cast<M &>(*this).operator()(i, j);
    }

    constexpr auto operator()(size_t i, size_t j) const
    {
        return static_cast<const M &>(*this).operator()(i, j);
    }

    void swap_row(size_t r1, size_t r2)
    {
        for (size_t c = 0; c < dim_m(); ++c)
        {
            auto v = operator()(r1, c);
            operator()(r1, c) = operator()(r2, c);
            operator()(r2, c) = v;
        }
    }

    void swap_col(size_t c1, size_t c2)
    {
        for (size_t r = 0; r < dim_n(); ++r)
        {
            auto &a = operator()(r, c1);
            auto &b = operator()(r, c2);
            std::swap(a, b);
        }
    }

    friend std::ostream &operator<<(std::ostream &os, const matrix_expression &m)
    {
        os << '[';

        for (size_t i = 0; i < m.dim_m(); ++i)
        {
            os << '[';

            for (size_t j = 0; j < m.dim_n(); ++j)
            {
                os << m(i, j);
                if (j + 1 < m.dim_n())
                    os << ", ";
            }

            if (i + 1 < m.dim_m())
                os << ", ";

            os << ']';
        }

        os << ']';

        return os;
    }
};

// --------------------------------------------------------------------

template <typename F = float>
class matrix : public matrix_expression<matrix<F>>
{
  public:
    using value_type = F;

    template <typename M2>
    matrix(const matrix_expression<M2> &m)
        : m_m(m.dim_m())
        , m_n(m.dim_n())
        , m_data(m_m * m_n)
    {
        for (size_t i = 0; i < m_m; ++i)
        {
            for (size_t j = 0; j < m_n; ++j)
                operator()(i, j) = m(i, j);
        }
    }

    matrix(size_t m, size_t n, value_type v = 0)
        : m_m(m)
        , m_n(n)
        , m_data(m_m * m_n)
    {
        std::fill(m_data.begin(), m_data.end(), v);
    }

    matrix() = default;
    matrix(matrix &&m) = default;
    matrix(const matrix &m) = default;
    matrix &operator=(matrix &&m) = default;
    matrix &operator=(const matrix &m) = default;
    constexpr size_t dim_m() const { return m_m; }
    constexpr size_t dim_n() const { return m_n; }

    constexpr value_type operator()(size_t i, size_t j) const
    {
        assert(i < m_m);
        assert(j < m_n);
        return m_data[i * m_n + j];
    }

    constexpr value_type &operator()(size_t i, size_t j)
    {
        assert(i < m_m);
        assert(j < m_n);
        return m_data[i * m_n + j];
    }

  private:
    size_t m_m = 0, m_n = 0;
    std::vector<value_type> m_data;
};

// --------------------------------------------------------------------
// special case, 3x3 matrix

template <typename F, size_t M, size_t N>
class matrix_fixed : public matrix_expression<matrix_fixed<F, M, N>>
{
  public:
    using value_type = F;

    static constexpr size_t kSize = M * N;

    template <typename M2>
    matrix_fixed(const M2 &m)
    {
        assert(M == m.dim_m() and N == m.dim_n());
        for (size_t i = 0; i < M; ++i)
        {
            for (size_t j = 0; j < N; ++j)
                operator()(i, j) = m(i, j);
        }
    }

    matrix_fixed(value_type v = 0)
    {
        m_data.fill(v);
    }

    matrix_fixed(const F (&v)[kSize])
    {
        fill(v, std::make_index_sequence<kSize>{});
    }

    matrix_fixed(matrix_fixed &&m) = default;
    matrix_fixed(const matrix_fixed &m) = default;
    matrix_fixed &operator=(matrix_fixed &&m) = default;
    matrix_fixed &operator=(const matrix_fixed &m) = default;
    template<size_t... Ixs>
    matrix_fixed& fill(const F (&a)[kSize], std::index_sequence<Ixs...>)
    {
        m_data = { a[Ixs]... };
        return *this;
    }

    constexpr size_t dim_m() const { return M; }
    constexpr size_t dim_n() const { return N; }

    constexpr value_type operator()(size_t i, size_t j) const
    {
        assert(i < M);
        assert(j < N);
        return m_data[i * N + j];
    }

    constexpr value_type &operator()(size_t i, size_t j)
    {
        assert(i < M);
        assert(j < N);
        return m_data[i * N + j];
    }

  private:
    std::array<value_type, M * N> m_data;
};

template <typename F>
using matrix3x3 = matrix_fixed<F, 3, 3>;

template <typename F>
using matrix4x4 = matrix_fixed<F, 4, 4>;

// --------------------------------------------------------------------

template <typename F = float>
class symmetric_matrix : public matrix_expression<symmetric_matrix<F>>
{
  public:
    using value_type = F;

    symmetric_matrix(size_t n, value_type v = 0)
        : m_n(n)
        , m_data((m_n * (m_n + 1)) / 2)
    {
        std::fill(m_data.begin(), m_data.end(), v);
    }

    symmetric_matrix() = default;
    symmetric_matrix(symmetric_matrix &&m) = default;
    symmetric_matrix(const symmetric_matrix &m) = default;
    symmetric_matrix &operator=(symmetric_matrix &&m) = default;
    symmetric_matrix &operator=(const symmetric_matrix &m) = default;
    constexpr size_t dim_m() const { return m_n; }
    constexpr size_t dim_n() const { return m_n; }

    constexpr value_type operator()(size_t i, size_t j) const
    {
        return i < j
                   ? m_data[(j * (j + 1)) / 2 + i]
                   : m_data[(i * (i + 1)) / 2 + j];
    }

    constexpr value_type &operator()(size_t i, size_t j)
    {
        if (i > j)
            std::swap(i, j);
        assert(j < m_n);
        return m_data[(j * (j + 1)) / 2 + i];
    }

  private:
    size_t m_n;
    std::vector<value_type> m_data;
};

// --------------------------------------------------------------------

template <typename F, size_t M>
class symmetric_matrix_fixed : public matrix_expression<symmetric_matrix_fixed<F, M>>
{
  public:
    using value_type = F;

    symmetric_matrix_fixed(value_type v = 0)
    {
        std::fill(m_data.begin(), m_data.end(), v);
    }

    symmetric_matrix_fixed(symmetric_matrix_fixed &&m) = default;
    symmetric_matrix_fixed(const symmetric_matrix_fixed &m) = default;
    symmetric_matrix_fixed &operator=(symmetric_matrix_fixed &&m) = default;
    symmetric_matrix_fixed &operator=(const symmetric_matrix_fixed &m) = default;
    constexpr size_t dim_m() const { return M; }
    constexpr size_t dim_n() const { return M; }

    constexpr value_type operator()(size_t i, size_t j) const
    {
        return i < j
                   ? m_data[(j * (j + 1)) / 2 + i]
                   : m_data[(i * (i + 1)) / 2 + j];
    }

    constexpr value_type &operator()(size_t i, size_t j)
    {
        if (i > j)
            std::swap(i, j);
        assert(j < M);
        return m_data[(j * (j + 1)) / 2 + i];
    }

  private:
    std::array<value_type, (M * (M + 1)) / 2> m_data;
};

template <typename F>
using symmetric_matrix3x3 = symmetric_matrix_fixed<F, 3>;

template <typename F>
using symmetric_matrix4x4 = symmetric_matrix_fixed<F, 4>;

// --------------------------------------------------------------------

template <typename F = float>
class identity_matrix : public matrix_expression<identity_matrix<F>>
{
  public:
    using value_type = F;

    identity_matrix(size_t n)
        : m_n(n)
    {
    }

    constexpr size_t dim_m() const { return m_n; }
    constexpr size_t dim_n() const { return m_n; }

    constexpr value_type operator()(size_t i, size_t j) const
    {
        return static_cast<value_type>(i == j ? 1 : 0);
    }

  private:
    size_t m_n;
};

// --------------------------------------------------------------------
// matrix functions, implemented as expression templates

template <typename M1, typename M2>
class matrix_subtraction : public matrix_expression<matrix_subtraction<M1, M2>>
{
  public:
    matrix_subtraction(const M1 &m1, const M2 &m2)
        : m_m1(m1)
        , m_m2(m2)
    {
        assert(m_m1.dim_m() == m_m2.dim_m());
        assert(m_m1.dim_n() == m_m2.dim_n());
    }

    constexpr size_t dim_m() const { return m_m1.dim_m(); }
    constexpr size_t dim_n() const { return m_m1.dim_n(); }

    constexpr auto operator()(size_t i, size_t j) const
    {
        return m_m1(i, j) - m_m2(i, j);
    }

  private:
    const M1 &m_m1;
    const M2 &m_m2;
};

template <typename M1, typename M2>
auto operator-(const matrix_expression<M1> &m1, const matrix_expression<M2> &m2)
{
    return matrix_subtraction(m1, m2);
}

template <typename M1, typename M2>
class matrix_matrix_multiplication : public matrix_expression<matrix_matrix_multiplication<M1, M2>>
{
  public:
    matrix_matrix_multiplication(const M1 &m1, const M2 &m2)
        : m_m1(m1)
        , m_m2(m2)
    {
        assert(m1.dim_m() == m2.dim_n());
    }

    constexpr size_t dim_m() const { return m_m1.dim_m(); }
    constexpr size_t dim_n() const { return m_m1.dim_n(); }

    constexpr auto operator()(size_t i, size_t j) const
    {
        using value_type = decltype(m_m1(0, 0));

        value_type result = {};

        for (size_t k = 0; k < m_m1.dim_m(); ++k)
            result += m_m1(i, k) * m_m2(k, j);

        return result;
    }

  private:
    const M1 &m_m1;
    const M2 &m_m2;
};

template <typename M, typename T>
class matrix_scalar_multiplication : public matrix_expression<matrix_scalar_multiplication<M, T>>
{
  public:
    using value_type = T;

    matrix_scalar_multiplication(const M &m, value_type v)
        : m_m(m)
        , m_v(v)
    {
    }

    constexpr size_t dim_m() const { return m_m.dim_m(); }
    constexpr size_t dim_n() const { return m_m.dim_n(); }

    constexpr auto operator()(size_t i, size_t j) const
    {
        return m_m(i, j) * m_v;
    }

  private:
    const M &m_m;
    value_type m_v;
};

template <typename M1, typename T, std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
auto operator*(const matrix_expression<M1> &m, T v)
{
    return matrix_scalar_multiplication(m, v);
}

template <typename M1, typename M2, std::enable_if_t<not std::is_floating_point_v<M2>, int> = 0>
auto operator*(const matrix_expression<M1> &m1, const matrix_expression<M2> &m2)
{
    return matrix_matrix_multiplication(m1, m2);
}

// --------------------------------------------------------------------

template <typename M>
auto determinant(const M &m);

template <typename F = float>
auto determinant(const matrix3x3<F> &m)
{
    return (m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) +
            m(0, 1) * (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) +
            m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0)));
}

template <typename M>
M inverse(const M &m);

template <typename F = float>
matrix3x3<F> inverse(const matrix3x3<F> &m)
{
    F det = determinant(m);

    matrix3x3<F> result;

    result(0, 0) = (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) / det;
    result(1, 0) = (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) / det;
    result(2, 0) = (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0)) / det;
    result(0, 1) = (m(2, 1) * m(0, 2) - m(2, 2) * m(0, 1)) / det;
    result(1, 1) = (m(2, 2) * m(0, 0) - m(2, 0) * m(0, 2)) / det;
    result(2, 1) = (m(2, 0) * m(0, 1) - m(2, 1) * m(0, 0)) / det;
    result(0, 2) = (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)) / det;
    result(1, 2) = (m(0, 2) * m(1, 0) - m(0, 0) * m(1, 2)) / det;
    result(2, 2) = (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0)) / det;

    return result;
}

// --------------------------------------------------------------------

template <typename M>
class matrix_cofactors : public matrix_expression<matrix_cofactors<M>>
{
  public:
    matrix_cofactors(const M &m)
        : m_m(m)
    {
    }

    constexpr size_t dim_m() const { return m_m.dim_m(); }
    constexpr size_t dim_n() const { return m_m.dim_n(); }

    constexpr auto operator()(size_t i, size_t j) const
    {
        const size_t ixs[4][3] = {
            { 1, 2, 3 },
            { 0, 2, 3 },
            { 0, 1, 3 },
            { 0, 1, 2 }
        };

        const size_t *ix = ixs[i];
        const size_t *iy = ixs[j];

        auto result =
            m_m(ix[0], iy[0]) * m_m(ix[1], iy[1]) * m_m(ix[2], iy[2]) +
            m_m(ix[0], iy[1]) * m_m(ix[1], iy[2]) * m_m(ix[2], iy[0]) +
            m_m(ix[0], iy[2]) * m_m(ix[1], iy[0]) * m_m(ix[2], iy[1]) -
            m_m(ix[0], iy[2]) * m_m(ix[1], iy[1]) * m_m(ix[2], iy[0]) -
            m_m(ix[0], iy[1]) * m_m(ix[1], iy[0]) * m_m(ix[2], iy[2]) -
            m_m(ix[0], iy[0]) * m_m(ix[1], iy[2]) * m_m(ix[2], iy[1]);

        return (i + j) % 2 == 1 ? -result : result;
    }

  private:
    const M &m_m;
};

} // namespace cif